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Stress in an elastic wedge or notch loaded 
by a localized internal source 

R.A. SACKS, J. E. R O B I N S O N  
Solid State Science Division, Argonne National Laboratory, Argonne, Illinois, USA 

A study is presented of the stress inside a two-dimensional elastic solid which has a 
boundary surface angle and which is loaded by an internal point source of expansion. 
An exact analytic solution for the stress is obtained, for general surface angle and source 
position, and evaluated numerically for several representative cases of wedges and notches. 
The singular behaviour given by the leading terms near the angle vertex is found to be 
highly localized, and there is little or no stress enhancement near the source. For many 
combinations of boundary angle and source location, however, a local region of 
significant enhancement occurs on that part of the surface nearest the source. Implica- 
tions of these resu Its are discussed, with particular reference to surface steps. 

1. Introduction 
Effects of irregularities in surface geometry on 
stress distributions in near-surface regions of 
solids play significant roles in diverse materials 
defect and failure phenomena. In this paper we 
analyse a two-dimensional prototype for the 
stresses due to a localized source applied near a 
surface angle or corner and present exact, general 
solutions for the stress distributions. Without 
attempting a broad survey, we first cite here some 
effects and phenomena that we have had in mind, 
and indicate circumstances in which exact solu- 
tions can be essential. 

The importance of local stress-raising mech- 
anisms to the description of brittle failure is well 
known [1], and it is generally accepted that 
fatigue cracks are initiated at some surface pecul- 
iarity [2]. A viable physical model for the recently 
reported sputtering of macroscopic chunks from 
the surfaces of metals under energetic neutron 
irradiation [3,4] appears to require allowance 
for at least moderate stress enhancement near 
a neutron-induced collision cascade [5]. Since 
chemical attack is known to accelerate in regions 
of elevated stress*, a theory of the dynamics of 
corrosive chemisorption should take into account 
the influence of surface topography on local 
stress. Finally migration and interaction of crystal 
*For example, dislocations are commonly decorated by chemical etching. 
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defects and impurities can be strongly affected 
by local stress patterns, and hence, be influenced 
by modification of these patterns by surface 
structures. 

Most commonly, investigations of stress raising 
effects have employed one or both of two simpli- 
fications. Often the loading pattern chosen con- 
sists of a uniform stress applied over a substantial 
portion of the sample surface. Frequently, the 
stress analysis retains only the leading term of an 
expansion in the vicinity of a sharp feature or 
near-singularity of interest. Descriptions of stresses 
near crack tips in terms of conventional stress- 
intensity factors [6] exemplify this second type 
of approximation. However useful these two 
simplifications have proved, there are many 
problems of interest in which ne i ther  may be 
made with a priori  assurance that an adequate 
description of the physical situation will survive. 
One example is a collision cascade, produced by 
energetic particle bombardment, located near the 
root of  a surface step. The transient thermal 
stresses associated with the cascade obviously 
differ from uniform surface loading and, when 
knowledge of the total stress near the cascade 
is required, an expansion valid for the region 
asymptotically close to the step root can be 
quite unreliable. Similarly, in growth by diffu- 

919 



sion of  a precipitate in an alloy, one may be 
interested more in the  stress field close to the 
boundary of  the precipitate than in that at a near- 
by step root;  here again a "leading term" approxi- 
mation has uncertain validity. The complexities 
of  a complete and realistic treatment of  such 
situations are sufficiently great that it is very 
useful to study exactly soluble models which 
incorporate important physical features. 

We study a two-dimensional wedge with an 
internal point source of  expansion (Fig. 1), using 
linear elasticity theory. Since an extended source 
with circular symmetry is equivalent to an equal- 
strength point source at its centre, this model is 
adaptable to wedge-shaped surfaces with inclusions 
or voids or to three-dimensional wedges or wedge- 
shaped surface ridges which are loaded by cylin- 
drical sources parallel to the wedge vertex (e.g. 
a long narrow collision cascade). In addition, 
since most of  the effects should be localized near 
the wedge vertex, we may expect to gain at least 
qualitative understanding of  the response o f  a 
surface step to a similar cylindrical stress source 
by a superposition o f  two wedges - one in which 
the internal angle a is less than 7r, and the other 
with a>Tr .  Our results may thus be compared 
with Marsh's [7] experimental finding of  signi- 
ficant stress enhancement in the vicinity of  the 
roots of  a surface step subjected to the more 
conventional form of  surface loading. 

2. Analysis 
In polar co-ordinates* it is easily shown that the 
stress components in an infinite medium surround- 
ing a two-dimensional point source of  expansion 
of  strength 6A at ro = (ro, 00) are 

~ SOURCE 
a12 

Figure 1 A two-dimensional wedge of  total interior angle 
a is loaded by an internal point source of expansion. 
The source is located a distance r o from the wedge vertex 
and at an angle 0 o f rom the wedge bisector. 

err = (t~A/Tr) [-- I r -- ro 1-2 + 2r~ 

sin e (0 - -0o )  Ir -- ro 1-4 ] 

Coo = (tl~A/Tr) [Ir -- ro 1-2 -- 2ro 2 
(1) 

sin 2 (0 - - 0 0 ) l r - - r o 1 - 4 ]  

~rro = --2(l~6A/zr)ro sin (0 -- 0o) 

[r -- ro cos (0 -- 0o)] ] r - -  ro [-4, 

where /~ is the shear modulus for the material. 
Choosing units such that 1~6Afir = 1, the maxi- 
mum shearing stress T, given by 

2 1/2 r = [�88 2 +Oro] , (2a) 

reduces for the point source to 

~" = I r - - ro [  -2. (2b) 

In the interior of  a wedge the stress components 
in these units are 

orr = --[r  -- ro 1-2 + 2r~ sin 2 (0 --Oo)lr -- ro 1-4 

+ [r -1 (3/3r) +r -2 (32 /302)]  X 

a00 -=- [r-- to 1-2 --2r~ sin 2 (0 - -00) l r - - ro  1-4 + 

3 2 x /~?  (3) 

Go = --2ro sin (0 - -0o)  [r--ro cos (0 -- 0o)] 

[r -- ro [-4 -- (3/3r) (r -1 3X/30) 

where X is the Airy function [9] satisfying the 
biharmonic equation 

V4X = 0, (4) 

and we must choose the solution which causes 
the total stress on the boundary planes to vanish 

or0 = o00 = 0 a t0  = +~/2.  (5) 

Our method of  solution is an extension of  
Sneddon's treatment of  a symmetrically loaded 
wedge [10].  With the introduction of  the Mellin 
transform 

;? x (S ,  O) = r s-1 dr x(r ,  0), (6) 

the biharmonic equation reduces to 

(s + a2/ao )t(s + 2)  5 + 32130 ~ ] x (S ,  o) = o. 

(7) 

*See, for example [8] for definitions of  stress and strain components and the statement of Hooke's law in plane polar 
co-ordinates. 
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The general solution to Equation 7 is 

~(s, 0) = A(S) sin (SO)+B(S) cos (SO) 

+ C(S) sin [(S + 2)0] + D(S) cos [(S + 2)0]/~8) 

Multiplying the last two of Equations 3 by r s§ , 
setting 0 =-+ a/2, integrating over r*, and using 
Equation 5 yields four algebraic equations for the 
coefficients A, B, C, D. These are easily solved to 
find 

g ( S , ~ , o )  = 

x(S, O) = (r [S (0 -0o ) ]  

+sin(SOo)g(S,a,O)/G(S,a) (9) 

+ cos (so o)h (S, ~, O)/H(S, ~)}, 
where 

- - 2 < R e S < 0 ,  

{(S + 1) cos (a) + cos [(S + 1) a] } 

sin (SO) -- S sin [(S + 2) 0 ],  

h(S,~,O) = {(S+ 1) cos ( ~ ) - c o s  [(S+ 1)~] } 
(10) 

cos(SO)-Scos [ (S+2)0 ] ,  

G(S,a) = (S+ 1) sin (a) -- sin [(S+ 1)a],  

H(S,a) = (S+ 1) sin (a) + sin [(S+ 1)a]. 

The stress is then found from Equations 3 and the 
Mellin inversion formulat 

• 0) = (27ri) -1 ( c , i=  r_S~(s ' O) dS 
aC-i d 

- - 2 < C < 0 .  
(11) 

Before applying Equation 11, one technical 
difficulty must be resolved. If a > zr, G and Hwill 
generally have roots - and hence x'will have poles 
- in the region --2 < Re(S) < 0 (aside from the 
obvious pole at S = - -1  which, it turns out, does 
not contribute to the stress). Different allowable 
choices of C will thus lead to different solutions 
for the stress; that is, the original boundary value 
problem is underdetermined$. The additional 
boundary conditions necessary to specify the 
solution uniquely are supplied by the physical 
requirement that the components of the dis- 
placement, 

U~ = (2~r)-* 8A [r - ro cos (0 - 0 o)]  [r - ro 1-2 

+ i~A(27r2Ei) -2 ~c+i~dSr-S-i(s + 1)-1 
aC-i~ 

x [ S + S ( S +  1)v-O2130~],x 
(12) 

Uo = (270 -18Aro sin (0 --0o)[-2 _ 2r~ 

fC+i~ -S -1 
--p6A (21r2Ei) Jc-i~ dSr (S + 1) -1 

(S + 2) -1 

x [2S 2 + 3 S + 2 + 3 2 / 3 0 2  + 

v(s  + l)  (s  + 2)] 3~/30 

(E is Young's modulus) must be finite everywhere. 
In particular, they must be finite as r ~ 0 and as 
r-+ ~. This stipulation implies that the correct 
choice of contour is C = --1 w 

On substituting Equations 9 and 10 into 
Equation 11, one can verify that for all values 
of C the integrand vanishes exponentially for 
Ira(S)-+- +oo, and the line integral converges. 
Accordingly, for r>ro the line of integration 
may be moved off to C =  Re(S)-++oo and 
x(r, O) is the sum of the contributions from 
poles to the right of R e ( S ) = - - I .  Similarly, 
for r <ro, x(r, O) is the sum of the residues at 
poles to the left of Re(S) = --1. 

Substituting x(r, 0) so evaluated into Equations 
3 gives 

Orr = �9 ~r -2 [(S3G/OS) -~ (ro/~) s 

sin (S0o )(3~ g/302 -- Sg)] s=s e 

+ E ' ( S 3 H / 3 S )  -1 (ro/r) s 
Sh 

cos (S0o)(32h/302 -- Sh )] S=Sh 

~oo = ~ rrr-2 [(3G/3S) -1 (ro/r) s 
se 

sin (SOo)(S + 1)g]s=sg (13) 

z' } 
+ [OH/OS) - '  (ro/~) ~ 

Sh 

cos (SOo)(S + 1)h] S=Sh 

*See [11] p. 309, for the  Mellin t ransforms  of  the  source terms.  

tSee  [111 p. 307. 

SThis indeterminacy may  be though t  o f  as reflecting the  possibility o f  adding elastic mult ipoles at the  origin and "at  
inf in i ty"  which satisfy the  confi t ions o f  exert ing no stress on  the  boundary  planes. See [12] .  

w "cor rec t"  choice is actually either C = --1 - -  e or C = --1  + e (e ~- 0), since X has a pole at S = - -1 .  As this pole 
makes  no cont r ibut ion  to the  stress (a l though it does contr ibute  to the  displacement) ,  the  quest ion o f  which  choice is 
correct is no t  addressed in de ta i l  

921 



{2' aro = ~- 7rr -2 [(S~G/3S) -1 (ro/r) s 
sg 

sin (SOo)(S + 1)3g/bO] s=sg 

+ Z '  [(SOH/OS) -I (ro/r) s 
Sh 

cos (SOo )(S + 1)Oh/30 ] s=sh } �9 
, t  

In Equations 13, S e and S h are the roots of  G 
and H, respectively, the primed sums run over 
the r o o t s  Re(Sg,  S h ) > - - I  for r>ro and Re 
(Se, Sh )<- - I  for r < r 0 ,  and the upper (lower) 
sign applies for r>ro(r<ro) .  Table I lists the 
first few roots for several values o f  a. 

Several properties of  the sums in Equations 
13 are apparent. The roots Sg and Sh occur in 
complex conjugate pairs, so the sums are mani- 
festly real. The roots Sg = - - 2 ,  --1, 0 and Sh = 
--1 do not contribute, because the corresponding 
residues vanish. The dominant behaviour at both 
large, and small r is determined by the roots lying 
closest to Re(S) = --1,  and, as the values in Table 
I indicate, these are always roots of  H. Since the 

T A B L E  I The roots Sg and Sh of G and H (Equations 
10). When a value for y is given, four roots are formed 
from the combinations S = - - 1  +x +- iy. and S = - - 1  -- 
x +- iy. When y is not shown, only the two roots S = --1 +- 
x occur. The values Sg = - - 2 ,  --1, 0 and S h = - - 1  are 
roots of  G and H for any a but are not shown since they 
do not contribute to the sums in Equations 13 

a Xg Yg xh Yh 

7r/4 9.6 3.4 5.4 2.7 
17.7 4.1 13.7 3.8 
25.8 4.6 21.7 4.4 

zr/2 4.8 1.5 2.7 1.1 
8.9 1.8 6.8 1.7 

12.9 2.1 10.9 2.0 
31r/4 3.2 0.64 1.9 0.36 

5.9 0.90 4.6 0.79 
8.6 1.1 7.3 0.99 

51r/4 1.3 - 0.67 - 
2.8 0.33 2.0 0.22 
4.4 0.46 3.6 0.40 

4rr/3 1.1 - 0.62 - 
2.6 0.35 1.8 0.25 
4.1 0.46 3.3 0.41 

37r/2 0.91 - 0.54 - 
2.3 0.32 1.6 0.23 
3.6 0.42 3.0 0.37 

71r/4 0.66 - 0.51 - 
2.0 0.16 1.4 0.011 
3.1 0.26 2.6 0.22 

*See [14] Chpt. 2. 

922 

roots occur in pairs symmetric with respect to 
S = - - 1 ,  we may write the leading behaviour at 
small r as r -~ and at large r as r ~ -2, where ~3 
varies monotonically from - - o o  when a . = 0 ,  
through 0 when a = 7r, to +�89 when a = 27r. The 
square root singularity at r = 0 for a = 2rr corre- 
sponds precisely to that found by Wigglesworth 
for notched planes [13, 14] and to the familiar 
result for the stress concentration near the tip of  
a sharp crack*. Note that a is 1/2 only for this 
flat slit limit, although it remains nearly 1/2 for 
a 2 (37r/2), and, hence, it is clear that one should 
exercise some restraint in wholesale application 
of  crack tip formulae. For a < n ,  the stresses 
vanish at the origin. The effect of  the surface 
angle on the stress persists to large distances. While 
the stress from a point source in an infinite med- 
ium falls off  as r -2 , here the stress vanishes asy- 
mptotically more rapidly for a <  rr and more 
slowly for a > ~. 

3. Numerical results 
Numerical evaluation of  the sums in equations 13 
reveals that this "leading term" analysis is incom- 
plete. Figs. 2 to 5 are contour plots for a few 
values of  ~ of  the maximum shearing stress r, 
Equations 2a, and of  a stress enhancement factor 
K defined by 

g = Ttotal/Tapplie d . (14) 

The behaviour for both large and small r described 
in the last section is present: as r-> 0, both r 
and K vanish for a < 7r and diverge for a > 7r; as 
r -> 0% K vanishes for a < 7r and increases for 
a > 7r. However, as is clearly shown in the plots, 
this behaviour holds only for (r/ro)>> 1 (where 
r is much too small to have significant effect) 
or for (r/ro)~ 1 (where the approximation of  a 
sharp corner is most critical). In the immediate 
neighbourhood of  the source, all wedges investi- 
gated have ~ between 0.9 and 1.1. That is, the 
effects of  the boundary are insignificant in the 
region of  maximum stress. There is, however, an 
interesting feature on the wedge surface. For all 
values of  0o when a < rr, and for some values of  
0o when a > n, there is a localized region on the 
surface, near the point of  closest approach to the 
source, where • attains values between 1.8 and 
2.1. 

In general, the shapes of  the contours for r, 
as opposed to their spacing, exhibit only slight 
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Figure 2 Contour plots of r, Equation 2a, and K, Equation 14. r is measured in units of (pSAfirr~). Co-ordinates are 
defined in Fig. 1. Inserts, surrounded by dashed lines in the vacuum region, are expanded views of the neighbourhood 
of the angle vertex, r (a) to (c); ~ (d) to (f). a = (3n/2). 0o: 0 in (a) and (d) ~r/4 in (b) and (e), and hi2 in (c) and (f). 
Note that 0.9 < K < 1.0 at the source, while (f) exhibits a local "hot spot" with K = 1.95 on the surface. 

dis tor t ions f rom the circular symmet ry  they  

would  have in an infini te  medium,  save quite  close 

to the boundary .  Al though  appreciable s t ructure  

does appear  in the con tou r  plots for K, it should 

be no ted  that  the changes in ~ f rom one con tour  

to the nex t  are rather  small. 

4. Discussion 
As discussed in Sect ion  1, we expec t  stresses near 

the t op  and near the root  o f  a macroscopic  surface 

step to be approx imated  by  those we have found 

for wedges wi th  ~ < 7r and ~ > ~r, respectively.  The 

localized shielding o f  the applied stress we find 

near the  origin for a < 7r, and the local ized diver- 

gence found  for a > r r  are in agreement  wi th  

Marsh's [8] findings o f  li t t le or no t  stress near his 

step tops  and o f  high stress near his step roots:  

Our result o f  l i t t le stress modi f ica t ion  near the 

source is in accord wi th  Marsh's stress contours  

since these show li t t le stress concen t ra t ion  at 
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Figure 3 Contour plots of r and ~, as described for Fig. 2.r (a) and (b); K (c) and (d). 0o = 0. a: (7~r/4) in (a) and (c), 
5n/4 'in (b) and (d). Note that there is no hot spot on the surface. 
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Figure 4 Contour plots ;2 0 
of r and •, as described ~ ~ 0 1  ~ 
for Fig. 2. (a) and (b) 
T; (C) and (d) K, a =~r/2. 
0o=0 in (a) and (c), 
~r/8 in (b) and (d). Note 
the surface structure in K, .4 I b 

b:~h tlh:tge ~andanis~Sl :~ 9 ~t3' ~ 0'7 0 t d 
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Figure 5 Contour plots of r and K, as described for Fig. 2. r (a) and (b); K (c) and (d). 0 o = 0. a: n/4 in (a) and (c), 
3r in (b) and (d). 

steps in materials which have been suitably im- 
planted. This surface stress pattern is, of  course, 
strongly dependent on the type of  loading, and it 
is not surprising that the simple surface pressure 
employed in Marsh's work did not produce it. 
Experimental test of  the results we have found 
should be straightforward with adaptation of 
Marsh's photoelastic technique to our form of  
loading. 

In conclusion, we remark that the theoretical 
machinery we have employed is not limited 
strictly to point sources of  expansion. For example, 
we have found that a string of  misfit dislocations 
surrounding an inclusion can be modelled by an 
appropriate array of point sources with about 5% 
accuracy at distances from the inclusion as small 
as the misfit spacing [15].  Accordingly, the 
analysis could be adapted usefully to other stress 
producing configurations when the comparative 
simplicity of  point sources would be advantageous. 

distances large compared to his step-root radius 
and our source is always a finite distance from a 
sharp angle vertex. 

Initially, the divergence of  K at both  large and 
small r for a > n  suggested that enhancement 
might be significant throughout a substantial 
region near a step root, but that possibility is not 
confirmed by the numerical results. This implies, 
for one thing, that stresses due to randomly placed 
collision cascades, and in particular their nuclea- 
tion of  penny-shaped cracks, cannot be greatly 
enhanced by surface steps, because of the low 
geometrical probability of  placement in a region 
of  K > l .  

The localized regions of  significant stress en- 
hancement on the sample surface are interesting. 
Since it is common for chemical attack to con- 
centrate at points of local stress elevation, we may 
expect corrosive chemisorption to be accelerated 
on the top surface as well as at the root of  surface 
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